Skip to main content

Market Positioning

SkoutLab occupies a unique position in the analytics ecosystem. While most tools focus on making humans faster at analysis, SkoutLab focuses on having AI do the analysis.
                    Human-Driven                    AI-Driven
                         │                              │
    ┌────────────────────┼──────────────────────────────┼────────────────────┐
    │                    │                              │                    │
    │   Traditional BI   │   Augmented Analytics        │   SkoutLab         │
    │   (Tableau, Power  │   (Tellius, ThoughtSpot)     │   (Autonomous      │
    │    BI, Looker)     │                              │    Analytics)      │
    │                    │                              │                    │
    │   "Build charts"   │   "Ask questions faster"     │   "AI finds        │
    │                    │                              │    insights"       │
    └────────────────────┴──────────────────────────────┴────────────────────┘

The Key Differentiator

AspectTellius / ThoughtSpotSkoutLab
Who asks questionsHumanAI proactively discovers
Who finds answersAI assists humanAI finds & validates
Who interpretsHumanAI writes narrative, human reviews
Core value”More people can query data""Get analysis without analysts”
ReplacesDA’s “data pull” workDA’s “analysis + reporting” work
Software Engineering Analogy:
  • Tellius = GitHub Copilot (helps you code faster)
  • SkoutLab = AI Code Agent (understands the problem, writes the solution)

Competitor Architecture Breakdown

1. Augmented Analytics (Tellius, ThoughtSpot)

What they do: Natural language query + auto-insights + self-service BI
┌─────────────────────────────────────────────────────────────────┐
│                        User Interface                            │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐              │
│  │ NLQ Input   │  │ Drag-Drop   │  │ Click       │              │
│  │ "Show sales"│  │ Dashboard   │  │ Explore     │              │
│  └─────────────┘  └─────────────┘  └─────────────┘              │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                      LLM Layer (Thin Shell)                      │
│  • Intent recognition: "show sales" → QUERY intent               │
│  • Entity extraction: "last quarter" → time_range                │
│  • Result explanation: Data → Natural language summary           │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                     Semantic Layer (Core)                        │
│  Business Views:                                                 │
│    "Revenue" = SUM(orders.amount) WHERE status='paid'            │
│    "Customer" = users JOIN subscriptions                         │
│  Permissions: User A sees only Region='US'                       │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                      Query Engine                                │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐          │
│  │ Text-to-SQL  │  │ Query        │  │ Cache        │          │
│  │ (Templates)  │  │ Optimization │  │ Layer        │          │
│  └──────────────┘  └──────────────┘  └──────────────┘          │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                    Analytics Engine                              │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐          │
│  │ Anomaly      │  │ Driver       │  │ AutoML       │          │
│  │ Detection    │  │ Decomposition│  │ (Prediction) │          │
│  │ (Rules)      │  │ (SHAP/Trees) │  │              │          │
│  └──────────────┘  └──────────────┘  └──────────────┘          │
│                                                                 │
│  ⚠️  This layer is DETERMINISTIC — not LLM-driven               │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                       Data Connectors                            │
│  Snowflake │ BigQuery │ Redshift │ Postgres │ CSV               │
└─────────────────────────────────────────────────────────────────┘
Key Limitations:
  • Reactive (waits for user questions)
  • Pattern matching, not true hypothesis testing
  • Outputs charts + bullets, not narrative reports
  • Requires semantic layer setup (weeks of config)

2. Palantir (Foundry / AIP)

What they do: Enterprise data integration + ontology + AI applications
┌─────────────────────────────────────────────────────────────────┐
│                     Application Layer                            │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐              │
│  │ Operational │  │ AIP         │  │ Custom      │              │
│  │ Dashboards  │  │ (AI Chat)   │  │ Apps        │              │
│  └─────────────┘  └─────────────┘  └─────────────┘              │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                        AIP Layer                                 │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │ LLM + RAG over Ontology                                  │   │
│  │ • Chat interface to ask questions about data             │   │
│  │ • Generates actions/workflows                            │   │
│  │ • Constrained by ontology definitions                    │   │
│  └─────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                    Ontology Layer (Core Moat)                    │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │ Object Types: Customer, Order, Product, Transaction      │   │
│  │ Properties: customer.lifetime_value, order.margin        │   │
│  │ Actions: approve_order(), flag_fraud(), assign_rep()     │   │
│  │ Relationships: Customer → Orders → Products              │   │
│  │                                                          │   │
│  │ ⚠️  Requires months of professional services to build    │   │
│  └─────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                    Pipeline Layer                                │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐          │
│  │ Data         │  │ Transform    │  │ Data Quality │          │
│  │ Integration  │  │ (Code/Low-   │  │ Monitoring   │          │
│  │ (100+ src)   │  │  Code)       │  │              │          │
│  └──────────────┘  └──────────────┘  └──────────────┘          │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                       Data Sources                               │
│  Enterprise Systems │ IoT │ External Data │ Files               │
└─────────────────────────────────────────────────────────────────┘
Key Characteristics:
  • Strength: Deep enterprise integration, operational workflows, government contracts
  • Weakness: Extremely expensive ($1M+ deals), 6-12 month implementations
  • Target: Large enterprises with complex operational needs
  • AI Approach: LLM as chat interface over pre-built ontology (constrained)
SkoutLab vs Palantir:
AspectPalantirSkoutLab
Setup time6-12 monthsHours
Cost$1M+ / yearSelf-serve pricing
TargetF500 operationsGrowth companies analytics
AI roleChat over ontologyAutonomous analysis
FocusOperational actionsAnalytical insights

3. Databricks (Lakehouse + AI)

What they do: Unified data platform + notebooks + ML/AI
┌─────────────────────────────────────────────────────────────────┐
│                     Application Layer                            │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐              │
│  │ SQL Editor  │  │ Notebooks   │  │ Dashboards  │              │
│  │             │  │ (Python/R)  │  │ (Lakeview)  │              │
│  └─────────────┘  └─────────────┘  └─────────────┘              │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                       AI/ML Layer                                │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐              │
│  │ MLflow      │  │ Feature     │  │ Model       │              │
│  │ (Tracking)  │  │ Store       │  │ Serving     │              │
│  └─────────────┘  └─────────────┘  └─────────────┘              │
│                                                                 │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │ Mosaic AI (New)                                          │   │
│  │ • AI/BI Dashboards (Genie)                               │   │
│  │ • Text-to-SQL                                            │   │
│  │ • Agent Framework                                        │   │
│  └─────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                    Unity Catalog (Governance)                    │
│  • Data discovery                                               │
│  • Access control                                               │
│  • Lineage tracking                                             │
│  • AI/BI semantic model                                         │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                       Delta Lake (Storage)                       │
│  • ACID transactions                                            │
│  • Schema evolution                                             │
│  • Time travel                                                  │
└─────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                       Compute Layer                              │
│  Photon (SQL) │ Spark (ETL) │ GPU Clusters (ML)                 │
└─────────────────────────────────────────────────────────────────┘
Key Characteristics:
  • Strength: Best-in-class for data engineering + ML workflows
  • Target User: Data engineers, data scientists, ML engineers
  • AI Approach: Tooling for building AI (not AI that does analysis)
  • Genie (AI/BI): New product, essentially ThoughtSpot-like NLQ
SkoutLab vs Databricks:
AspectDatabricksSkoutLab
Primary userData engineers/DSBusiness analysts/Ops
Value prop”Build data + ML pipelines""Get insights without building”
AI approachTools to build AIAI that does analysis
SetupComplex (warehouses, compute, etc.)Upload CSV and go
OutputNotebooks, models, tablesAnalysis reports

Full Competitive Matrix

CapabilityTraditional BIAugmented AnalyticsPalantirDatabricksSkoutLab
Setup timeWeeksDays-WeeksMonthsWeeksHours
Who drivesHumanHuman (AI assists)Human (AI assists)HumanAI (human reviews)
Hypothesis generationManualNoneNoneManualAutomatic
Statistical validationManualPattern matchingLimitedManual codeAutomatic
Narrative reportsManualBulletsCustom appsManualAutomatic
Target userAnalystsBusiness usersOps teamsData teamsBusiness + Ops
Price point$$$$$$$$$$$$$$$$$$

SkoutLab’s Moat

Why Can’t Competitors Just Add LLM?

Architecture Matters

Tellius/ThoughtSpot are built for reactive queries, not proactive exploration. Adding LLM is a thin shell, not a new capability.

Workflow Difference

Our workflow is fundamentally different: AI generates hypotheses → AI validates → AI writes report. This requires ground-up architecture.

Statistical Rigor

We do proper hypothesis testing with p-values and confidence intervals. Competitors do pattern matching and correlation.

No Semantic Layer Required

Competitors need weeks of configuration. We work with raw data directly, making us accessible to companies without data teams.

Time Window

Competitors are moving toward “agentic” capabilities. Our defensible moat needs to be built through:
  1. Vertical Depth: Specialize in specific use cases (SaaS metrics, e-commerce, etc.)
  2. Statistical Rigor: True hypothesis testing, not just pattern matching
  3. Speed to Market: Build customer base and case studies before competitors catch up

Positioning Summary

One-liner: “SkoutLab is the AI analyst that does the work, so your team can focus on decisions.” For different audiences:
AudiencePositioning
Business buyer”Get the insights of a data team without hiring one”
Data team”Automate routine analysis, focus on strategic work”
VC/Investor”Autonomous analytics — AI agents that replace analyst workflows”
Key insight: We’re not selling a “better BI tool” — we’re selling analysis capability. The buyer is someone who needs insights but doesn’t have (or can’t scale) analyst resources.